Allosteric effects on substrate dissociation from cytochrome P450 3A4 in nanodiscs observed by ensemble and single-molecule fluorescence spectroscopy.
نویسندگان
چکیده
Cytochrome P450 (CYP) 3A4 is a major human drug-metabolizing enzyme and displays pharmacologically relevant allosteric kinetics caused by multiple substrate and/or effector binding. Here, in the first single-molecule (SM) fluorescence studies of CYPs, we use total internal reflection fluorescence microscopy to measure residence times of the fluorescent dye Nile Red in CYP3A4 incorporated in surface-immobilized lipid Nanodiscs, with and without the effector alpha-naphthoflavone. We find direct evidence that CYP3A4 effectors can decrease substrate off-rates, providing a possible mechanism for effector-mediated enhancement of substrate metabolism. These interesting results highlight the potential of SM methods in studies of CYP allosteric mechanisms.
منابع مشابه
Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs.
Nanodiscs are a new class of model membranes that are being used to solubilize and study a range of integral membrane proteins and membrane-associated proteins. Unlike other model membranes, the Nanodisc bilayer is bounded by a scaffold protein coat that confers enhanced stability and a narrow particle size distribution. The bilayer diameter can be precisely controlled by changing the diameter ...
متن کاملSigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives.
Cytochrome P450 3A4 (CYP3A4) plays a prominent role in the metabolism of a vast array of drugs and xenobiotics and exhibits broad substrate specificities. Most cytochrome P450-mediated reactions follow simple Michaelis-Menten kinetics. These parameters are widely accepted to predict pharmacokinetic and pharmacodynamic consequences in vivo caused by exposure to one or multiple drugs. However, CY...
متن کاملHuman cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent.
Testosterone, terfenadine, midazolam, and nifedipine, four commonly used substrates for human cytochrome P-450 3A4 (CYP3A4), were studied in pairs in human liver microsomes and in microsomes from cells containing recombinant human CYP3A4 and P-450 reductase, to investigate in vitro substrate-substrate interaction with CYP3A4. The interaction patterns between compounds with CYP3A4 were found to ...
متن کاملScreening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy.
A prototype nanoparticle biosensor based on localized surface plasmon resonance (LSPR) spectroscopy was developed to detect drug binding to human membrane-bound cytochrome P450 3A4 (CYP3A4). CYP3A4 is one of the most important enzymes in drug and xenobiotic metabolism in the human body. Because of the inherent propensity of CYP3A4 to aggregate, it is difficult to study drug binding to this prot...
متن کاملLiver microsomal lipid enhances the activity and redox coupling of colocalized cytochrome P450 reductase‐cytochrome P450 3A4 in nanodiscs
The haem-containing mono-oxygenase cytochrome P450 3A4 (CYP3A4) and its redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are among the most important enzymes in human liver for metabolizing drugs and xenobiotic compounds. They are membrane-bound in the endoplasmic reticulum (ER). How ER colocalization and the complex ER phospholipid composition influence enzyme activity are no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 47 شماره
صفحات -
تاریخ انتشار 2008